APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Sept. 1992, p. 2901-2909

0099-2240/92/092901-09$02.00/0
Copyright © 1992, American Society for Microbiology

Vol. 58, No. 9

Dynamic Mathematical Model To Predict Microbial Growth
and Inactivation during Food Processing

JAN F. VAN IMPE,'* BART M. NICOLAI,? TOON MARTENS,? JOSSE DE BAERDEMAEKER,?
AND JOOS VANDEWALLE!

ESAT-Department of Electrical Engineering* and Department of Agricultural Engineering,’
Katholieke Universiteit Leuven, B-3001 Leuven, and Universiteitsrestaurants
ALMA v.z.w.,B-3000 Leuven,?® Belgium

Received 27 January 1992/Accepted 4 July 1992

Many sigmoidal functions to describe a bacterial growth curve as an explicit function of time have been
reported in the literature. Furthermore, several expressions have been proposed to model the influence of
temperature on the main characteristics of this growth curve: maximum specific growth rate, lag time, and
asymptotic level. However, as the predictive value of such explicit models is most often guaranteed only at a
constant temperature within the temperature range of microbial growth, they are less appropriate in
optimization studies of a whole production and distribution chain. In this paper a dynamic mathematical
model—a first-order differential equation—has been derived, describing the bacterial population as a function
of both time and temperature. Furthermore, the inactivation of the population at temperatures above the
maximum temperature for growth has been incorporated. In the special case of a constant temperature, the
solution coincides exactly with the corresponding Gompertz model, which has been validated in several recent
reports. However, the main advantage of this dynamic model is its ability to deal with time-varying
temperatures, over the whole temperature range of growth and inactivation. As such, it is an essential building
block in (time-saving) simulation studies to design, e.g., optimal temperature-time profiles with respect to

microbial safety of a production and distribution chain of chilled foods.

Nowadays, there is an increased consumer interest in
chilled prepared food products. However, the shelf life of
this kind of food is usually limited because of spoilage by
common microorganisms, such as Pseudomonas and Lacto-
bacillus spp., and the increased risk for food pathogens.

In predicting the shelf life, the use of mathematical models
is gaining more and more attention to increase insight in the
different subprocesses and their interactions. For process
design and optimization, simulation studies can be very
useful to reduce the number of expensive and time-consum-
ing experiments.

It is well known that temperature, pH, and water activity
are the main factors influencing the microbial stability of
these foods. Unlike the pH and the water activity, the
temperature may vary extensively throughout the complete
production and distribution chain. It follows that a more
general modeling approach, in which mathematical models
for heat transfer, microbial load, and other process variables
(e.g., sensory quality) at any location in the food (with
well-known pH and water activity) are combined and inter-
connected, is required.

A model-based approach was pioneered in the sterilization
of canned foods, for which an optimization methodology
already exists (e.g., see the work of Saguy and Karel [7],
Nadkarni and Hatton [4], and Teixeira and Shoemaker [9]).
In sterilization processes a drastic thermal treatment results
in a complete inactivation of vegetative cells and a consid-
erable reduction of spores of clostridia at the expense of the
sensory quality. The kinetics of thermal inactivation are well
documented (e.g., see the work of Stumbo [8]). Under
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normal storage conditions and in the absence of postcontam-
ination, usually no further microbial growth occurs.

However, the construction of a dynamic model for the
microbial load in chilled prepared foods presents some
specific problems. The objective of the thermal treatment is
to obtain an optimal textural and sensory quality, while the
reduction of pathogenic and spoiling vegetative cells is a
derived benefit. The latter is less intensive than in canning,
and thermoresistent microorganisms (or their spores) may
survive. During the subsequent stages of chilling, transport,
storage, and distribution, the temperature within the product
can fluctuate between 0 and 30°C, and the surviving micro-
organisms may start growing. To our knowledge, there have
been up to now no mathematical models available which are
capable of predicting microbial growth in foods under
dynamically changing temperature conditions.

In this paper, we focus on models describing the bacterial
population evolution with respect to time and temperature.
The possible influence of pH and water activity is not
considered.

Recently, Zwietering et al. (10, 11) compared several
explicit models for bacterial growth, either reported in the
literature or newly developed, using a lot of experimental
data. Different models were compared statistically, as well
as with respect to their ease of use. They reparameterized
the models in order to obtain biologically significant param-
eters, such as the maximum specific growth rate (p,,,), the lag
time (A), and the asymptotic level (4) of the growth curve.
They concluded that in almost all the cases, the three-
parameter Gompertz model (2) can be regarded as the best
one in modeling the logarithm of the relative population size
[y = In (N/Np)] (N is the number of microorganisms per unit
of volume) as a function of time (¢f). Furthermore, they
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selected the models to describe the three main growth
characteristics, p,,, A\, and 4, as functions of temperature.
Unfortunately, the predictive value of these static models
can be guaranteed only at a constant temperature within the
temperature range of microbial growth. In practice, how-
ever, the food product may be subjected to wide temperature
variations. This hampers the application of these models in
process design and control.

The main features of the dynamic model presented in this
paper are as follows. First of all, both microbial growth and
inactivation are described with a single expression. A pos-
sible transition zone between growth and inactivation can be
simulated easily. Second, as the model is in the form of a
first-order differential equation instead of an explicit func-
tion, it can deal with time-varying temperatures in a consis-
tent way. This will be explained later on. As an additional
feature, the previous history of the product under consider-
ation can be taken into account in a natural way. Third, at a
constant temperature within the range of growth, it reduces
to the Gompertz model as proposed by Zwietering et al. (10,
11), which describes reported experimental data very well.
Finally, the model has the required mathematical properties
to make modern optimization techniques easily applicable.
As a result, this model can be one of the building blocks of
a complete simulation model, useful in process design and
optimization.

We wish to emphasize from the outset that the principal
aim of this paper is to introduce more-advanced concepts of
mathematical modeling into the field of predictive microbi-
ology. More specifically, the model developed here is a first
step towards a realistic and consistent description of the
evolution of a microbial population under time-varying tem-
perature conditions. The experimental validation of the
model under such temperature conditions is the subject of an
ongoing project within our research group.

THEORY

Modeling the bacterial growth curve as a function of time.
Following the work of Zwietering et al. (11), we define the
growth curve as the logarithm of the relative population size
[y = In (N/Ny)] as a function of time (z). Using extensive
experimental data, Zwietering et al. concluded that the
Gompertz model (chosen from a large number of explicit
models either proposed in the literature or newly developed)
can be regarded as the best one. They reparameterized the
original Gompertz model (2)—with parameters a, b, and
c—in order to obtain biologically meaningful parameters,
such as the maximum specific growth rate p,,,, the lag time A,
and the asymptotic value 4.

The original Gompertz equation (2) is as follows:

y = a exp[—exp(b - ct)] 0]

The modified Gompertz equation [where e = exp(1)] (11) is
as follows:

Wme
y =A exp {—CXP[T N—0)+ 1]} 2
The conversion formulas are as follows:
a=A 3)
i A+1 4)
A
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c== ©®)
Modeling p,,, A, and 4 as functions of temperature. To
cope with the influence of the temperature (T), Zwietering et
al. (10) selected for p,, N\, and A the most appropriate
model, either existing or newly developed. As a result,
modified versions of the square root model of Ratkowsky et
al. (6) have been proposed for both p,, and A. The square
root model of Ratkowsky et al. (6) is as follows: V ,,, = b,(T
— Tin)> Where T, ;. is the theoretical minimum temperature
for growth. Ratkowsky et al. (5) expanded their model to
describe the growth rate around the optimum and the max-
imum temperatures. The expanded square root model of

Ratkowsky et al. (5) is as follows:

Vb = b2 (T = TuiaX{1 — expleaT - Tuad}  (6)

where T, is the minimum temperature at which growth is
observed and T,,,, is the theoretical maximum temperature
for growth. To avoid positive values for p,, at temperatures
>Tmax> ZWietering et al. (10) proposed the following modi-
fied Ratkowsky model:

B = b3 (T — Tyin)X1 — explcs(T — Tmax)]} 0]

Zwietering et al. (10) found that from a statistical point of
view, the last two models describe the growth rate data
sufficiently. They preferred model equation 7, as it had the
lowest residual sum of squared errors. However, the differ-
ence with the expanded Ratkowsky model is almost negligi-
ble.

For the asymptotic level 4 of the growth curve, the
following expression based on the model of Ratkowsky et al.
has been selected (10):

A =by{1 — explcd(T — Tg,ma)]} ®

where b, is the final level at low temperatures and T4 ..., is
the maximum temperature at which growth is observed.
Assuming that the final population N, is independent of the
inoculum level, b, depends on the inoculum level.

For the description of the lag time A as a function of
temperature, Zwietering et al. (10) selected the following
hyperbolic model:

In (\) =TL_q ©

The parameters obtained by Zwietering et al. (10) for the
models shown by equations 6 to 9 are summarized in Table
1.

Limitations of the current explicit model. As already men-
tioned, the predictive value of the model composed of
equations 2 and 7 to 9 is guaranteed only at a constant
temperature within the temperature range of bacterial
growth. Zwietering et al. (10) reported an excellent agree-
ment with measured values. However, this model cannot be
used under time-varying temperature conditions. Consider,
e.g., the following temperature profile. From¢ =0 htot =
20 h, T equals 10°C; at ¢ = 20 h, the temperature jumps to
30°C. In Fig. 1, the output of the explicit model of Zwietering
et al. (10) is compared with the result of the dynamic model
we shall present in the next sections. Although the solutions
coincide during the first phase, the model of Zwietering et al.
cannot handle the temperature shock in a consistent way: at
the moment of the temperature shock, the population makes
also a (discontinuous) jump which is, of course, impossible.
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TABLE 1. Parameters reported by Zwietering et al. (10) for the
models shown by equations 6 to 9

Model (equation no.) and parameter Estimate

Expanded Ratkowsky model (6)

On the other hand, the prediction of the dynamic model
coincides with what might be expected intuitively: from the
temperature shock on, the population starts growing faster
but remains continuous. In other words, the new dynamic
model can take into account the previous history of the
product at hand.

Observe that both model equations 7 and 8 predict unre-
alistic negative values for, respectively, w,, and A at tem-
peratures above the maximum temperature for growth. At
temperatures below the minimum temperature for growth,
model equation 7 predicts unrealistic positive values for p,,,.

In addition, Zwietering et al. (10, 11) use the Gompertz
model as an empirical model for describing the logarithm of
the relative population size [y = In (N/Ny)] with time, while
the original Gompertz model (2) was developed to describe

10 T T T .
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the evolution of the absolute population size N. Their
approach can be justified by the excellent fitting results of
experimental data. However, there is some inconsistency
from the mathematical point of view. At ¢ = 0, we have N(¢
= 0) = N,, so y(0) = 0. On the other hand, from model
equation 1 or 2 it is readily seen thaty — 0 for t - —o only.
At t = 0, we have

y(0) = a exp[ — exp(b)] = A4 exp[—exp (MTme A+ 1)]
(10)

which is not equal to zero. For the values of the parameters
estimated by Zwietering et al. (10), y(0) only approaches
zero. This has some consequences in developing a consistent
dynamic model, as we shall see further on.

Design requirements for a dynamic model. (i) The dynamic
model should be able to deal with time-varying temperature
profiles in a consistent way, over the whole biokinetic
temperature range of growth and inactivation. All variables
must take on physically acceptable values under all condi-
tions. (ii) The model should be able to simulate a transition
(whether smooth or not) between growth and inactivation,
using as few additional parameters as possible (in order to
avoid unnecessary complications in parameter estimation
studies). (iii) The previous history of the food product under
consideration should be taken into account. At the beginning
of a growth phase after a phase of inactivation, the reference
population level N, should be modified accordingly. This
will be explained later on. (iv) The model should reduce to
the validated existing explicit model, in the special case of a
constant temperature within the range of growth. (v) The
model should meet some mathematical requirements, such
as differentiability for all values, in order to make some
nonlinear parameter estimation algorithms and modern op-
timization techniques easily applicable.

A dynamic mathematical model. (i) A dynamic model for
growth. From the mathematical point of view, the main
reason that the model of Zwietering et al. (10) fails under
time-varying temperature conditions (Fig. 1) is that this

9

Dynamic model

Temperature

In(N/No) [-] - Temperature [10 °C]

30 35 40 45 50

Time [hr]

FIG. 1. Prediction of the explicit model of Zwietering et al. (10) versus the dynamic model for a step in the temperature profile.
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model must be considered the explicit solution of a more
general (dynamic) differential equation in the special case of
a constant temperature. The underlying differential equation
for model equation 1 (or 2) can be easily obtained by
differentiating y with respect to £. We have

dy

Z =a exp| — exp(b — ct)][ — exp(b — ct)]( - ¢)

dy a

Z =cy In (;) (11)

Unfortunately, parameter b and thus the influence of the lag
time A due to equation 4 have disappeared completely from
this dynamic model. Furthermore an initial condition, y(t =
0) = 0, as required by the definition of y itself, causes a
numerical problem in the right side of equation 11, although
the limit for y — 0 can be proven to be zero.

Both problems can be circumvented by using the initial
condition as given by equation 10. By using conversion
formulas 3 to 5 and model equations 7 to 9, this dynamic
model becomes function of T also. By doing so, we also
guarantee the complete equivalence of dynamic model 11
with explicit model 1 in the case of a constant temperature.

It is now easily seen that the jump in the temperature
profile of Fig. 1 causes a discontinuity in the values of w,,
and A and, as a consequence, in the value of y modeled by
equation 1. However, by using dynamic model 11, there is a
jump only in the derivative of y, y itself remaining continu-
ous. The influence of the temperature shock is smoothed
through the integration process, which results in a more
realistic time profile y(¢). This is one of the main advantages
of the new dynamic model.

In order to handle the third model design requirement on
N, in an easy way, we define the following variable:

n=1In @) 12)

Note that dy/dt = dn/dt. With ny, = In (N,), we obtain the
following dynamic model for n:

dn a
Z=c(n —ng) In (n —”0) (13)
n(t = 0) = ng + a exp[—exp(b)] (14)

The initial condition 14 follows immediately from equation
10.

(ii) A dynamic model including inactivation. As a first step,
we make the model for growth consistent outside the interval
[Tmin> Trmax]- Kohler et al. (3) proposed the following modi-
fication of the expanded Ratkowsky model (equation 6):

o = 0 if T < Tin

bm = b2? (T = Trmin)? {1 — explea(T — TP (15)

if Toin < T < Trax
W =0 if T> Tpax

Because of conversion formula 5, ¢ equals 0 outside the
interval [T;n, Tmax]- AS a result, y remains then constant
(equation 11), which is the desired behavior. Note that this
model is both continuous and differentiable for all values of
T, which makes it attractive from the mathematical point of
view also.
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Furthermore, the prediction by model equation 8 of neg-
ative asymptote values 4 for T > T ..., can be circum-
vented as follows. It is clear that around the transition
temperature T, ..., there are two phenomena occurring at
the same time: microbial growth and high-temperature inac-
tivation. A realistic model should exhibit some transition
point (or even a transition zone), where the net effect of both
reactions is almost zero: growth and inactivation compen-
sate each other almost completely. The most consistent and
elegant solution is to model both competing processes inde-
pendently of each other. As a result, we propose the
asymptote A to be independent of the temperature T

A =b4=A0—ll'l (N0)=A0—n0 (16)

In the food engineering literature, it is common practice to
model the high-temperature inactivation rate constant k (per
hour) with an Arrhenius-type model proposed by Bigelow

(1):
(2.303) [2.303 ]
k(T) = 60 exp (T — Tyep) 17
D z

ref

where D, is the time (minutes) required to reduce the
bacterial concentration by a factor of 10, at the reference
temperature T, while z is the increase in temperature
necessary to reduce this time requirement by the same
factor. In order to model a possible transition zone between
growth and inactivation in which y remains constant, we
propose the following modification of the model of Bigelow:

kmnod(T) = ftrans(T)k(T) (18)
firans(T) = exp{—exp[a(Tirans — 1]} (19

The temperature T,.,,, determines the length of the transi-
tion zone (Tyrans — Tmax)> While the parameter a determines
the transition velocity around T,,,,, from growth to inacti-
vation. Both parameters depend on the bacterial population
under consideration. The function f, ,..(7) is plotted in Fig.
2 for T\, ,ns = 50°C and some values of a. It can be seen that
for & — oo, f, .. (T) approaches a unit step function at T =
T\ans- In the special case of T, = Tmax> there is no
transition zone at al.

The overall specific growth rate p (per hour) is defined as
follows:

rans

dN 0
o (20)
By using definition 12 it follows that
dn ’1
iy (21)

Observe that the overall rate p includes both growth and
inactivation. We obtain the following dynamic model:

dn Ao —ng
_t =[1 = firans(Dlc(n — 1) In ( ) = frrans(DK(T)
n —ny
(22)
n(t = 0) = In (Ny) + a exp[—exp(b)] (23)

Note that in this model equation, the sum of the weighting
factors for growth and inactivation is equal to 1, thus
assuring a smooth transition if « is low.
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FIG. 2. Value of the transition function f,,,,,(7) for some values of the parameter a and T,,,,s = 50°C.

The third model design requirement can be explained as
follows. It can be expected that at the beginning of a new
growth phase after an inactivation phase, the organism has
to adapt again during some time to the lower-temperature
conditions. This results in a new lag time. In order to make
consistent predictions with model equation 22, the value of
ny = In (Ny)—which plays the role of a reference level—
must be changed accordingly. It follows that n, must be
variable with time z. By doing so, we take into account the
previous history of the food product in a natural way. The
desired behavior can be modeled by the following dynamic
model for n:

dno
_dT = 'Yfzero(T){” —np—a exp[—exp(b)]} (24)
no(t = 0) = In (No) (25)
Szero(T) = €xp {f'exp[B(Tzem - T)]} (26)

This can be explained as follows. f,..(T) is a switching
function similar to fi,.,«(7)- T,ero is the temperature at which
the overall specific growth rate p (equations 21 and 22)
changes sign and must be determined numerically. From
these equations it can be seen that in general T, depends
on the (logarithmic) population size n. In Fig. 3 are shown
some curves for T,,,, = 44.9°C and some values of T, and
. If Tppans = Tonax (upper plot), i.e., if there is no transition
zone, then T, approximates T, only for very large
values of a. However, in the generic case T ,,s > Timaxs the
lower plot indicates that for all values of n, T, almost
equals T,,,, from a = 2 on and needs not to be determined
numerically anymore.

B is set equal to a very large positive value (e.g., B = 100),
so that f,..(T) approaches a unit step function at T = T,
Note that, in contrast with parameter « in equation 19,
does not depend on the microbial population under consid-
eration. During a growth phase (T < T,...) frero(T) €quals 0
(at least from the numerical point of view), so n, remains

constant. During an inactivation phase (T > T,..,) frero(T)
equals 1, so n, moves towards {n — a exp[—exp(b)]} with a
velocity determined by the factor vy (which is at the disposal
of the user) and then tracks this value. At the beginning of a
subsequent growth phase, the difference (n — ng)—needed in
model equation 22—is at its desired value a exp[—exp(b)]
with an accuracy determined by <. This is equivalent with
the initial condition 14 for the dynamic model for growth
only. Note that a exp[—exp(b)] contains the lag time A in an
implicit way through equation 4. From the mathematical
point of view, n — n, never becomes negative, thus making
the right side of model equation 22 always computable. In
summary, the complete dynamic model is as follows: equa-
tions 22 to 25; for growth, equations 4, 5, 9, 15, and 16; for
inactivation, equation 17; and for transition, equations 19
and 26.

RESULTS AND DISCUSSION

In this section we check whether the design requirements
for a dynamic model as stated above are sufficiently fulfilled
by the proposed model. During all simulations mentioned,
the following parameter set was used: for growth, 4, = 21.58
and vy = 100; for inactivation (taken from the work of Stumbo
[8]), Dyes = 1.00, z = 10, and T,; = 65.6; and for transition,
Torans = 44.9, a = 1, and B = 100. For the other parameters
concerning growth, reference is made to Table 1. Observe
that in the model of Kohler et al. (equation 15) (3) the
parameters of the expanded square root model (equation 6)
can be used immediately. The parameters given in Table 1
are from Lactobacillus plantarum (10). Since no parameters
describing high-temperature inactivation are available, the
parameters for a Lactobacillus sp. (reported by Stumbo [8])
are given above. The value of the inoculum level N, is set
equal to 5 x 10°.

First of all, a transition zone between growth and inacti-
vation can be easily simulated by using the transition func-
tion f; .ns(7T) (equation 19). The overall specific growth rate p
as a function of temperature is given by the right side of
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FIG. 3. T, as a function of n = In (N) for some values of T,,,,; and a and T,,,, = 44.9°C.

equation 22. In Fig. 4, some of the possibilities are illus-
trated. In this plot, n is chosen such that max(p) = p,,. The
first curve, obtained by letting T .ns = Tmax and a = 1,
represents a microorganism with no transition zone at all.
The very smooth behavior around the transition point 7,,,,, is
obtained with a low value of a. The second curve exhibits a
transition zone with zero overall specific growth rate be-
tween T, ., and T,.,,.. The low value of « results again in a
smooth behavior at temperatures near T,.,,.. Observe that
both parameters T, and a depend on the microbial pop-
ulation under consideration: « is a curve-fitting parameter,
and T, has a clear physical interpretation. Obviously, the
shape of the transition zone in the overall specific growth
rate is rather sensitive to the value of T,,,,.. This indicates
that T, can be determined uniquely if sufficient experi-
mental data around T,,,,, are available.

Differentiability for all times and temperatures is guaran-

teed by the construction of the model itself. Note that
we proposed a smooth transition function f,..(T) (equa-
tion 26) instead of a simple unit step function. As a result,
derivation with respect to temperature can be done analyti-
cally for all values of T. As such, modern optimization
techniques (such as optimal control theory) become easily
applicable.

Furthermore, the model proposed can deal with time-
varying temperature profiles in a consistent way, over the
whole temperature range of growth and inactivation. In Fig.
5, the predicted response of a microbial population to a
hypothetic time-temperature profile is shown [N = exp(n) is
the absolute population size per unit of volume]. This plot
sufficiently illustrates the capabilities of the model. After a
phase of inactivation, the value of the reference level N, =
exp(n,) is indeed at the value required in the subsequent
growth phase. In the second growth phase, there is an



VoL. 58, 1992

DYNAMIC MODELING OF MICROBIAL GROWTH AND INACTIVATION

) IS i :
0
E
;, -l b e e .
E
i -2
g
bru :
g 4 1:Ttrans = Tmax =44.9-a =1
Q :
- Y E— 2:Trans = 48,0 -a =1
8 | | |
P O ST PP SO UU U SUP T PO PO UPURUUSPUOUUTOUO SYUUIPRRUROUVRIURUUPUPRURI FETUROORN .
3 OO SO OOO TS OOOS SO SO \
0 10 20 30 40 50
Temperature [°C]

FIG. 4. Overall specific growth rate as a function of temperature.

additional lag around ¢ = 50 h, due to the very low temper-
atures, as could be expected.

Finally, it can be easily seen that the dynamic model
reduces by construction to the experimentally validated
explicit model as proposed by Zwietering et al. (10, 11) in the
special case of a constant temperature within the range of
microbial growth. This is also illustrated in Fig. 1 for values
of ¢ lower than 20 h and in Fig. 5 for values of # lower than
40 h.

As for the parameter sensitivity, the following observa-
tions can be made. First, all parameters concerning growth
are taken from the work of Zwietering et al. (10). More
details concerning the practical identifiability and the deter-

mination of confidence intervals starting from experimental
data are reported there and are not repeated here. Suffice it
to say that all parameters describing p,,,, N\, and A can be
determined from experiments carried out at a lot of different
but constant temperatures. In addition, Kohler et al. (3)
demonstrated that when modeling the maximum specific
growth rate p,,, with equation 15 instead of using the ex-
panded Ratkowsky model (equation 6)—in other words,
using p,,, as the dependent variable instead of V p,,—best-fit
estimates of the parameters can easily be obtained by
employing a standard implementation of the Marquardt-
Levenberg algorithm. Model equation 15 is a close-to-linear
model (3). This means that a least-square estimator, even

50 T T T
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Z? 25
5 20
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5
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FIG. 5. Predicted response of a microbial population to a hypothetic time-temperature profile.
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FIG. 6. Sensitivity of the predicted response of a microbial population to variations in D, and z.

when sample sizes are relatively small, comes close to being
an unbiased, normally distributed, minimum-variance esti-
mator. As a result, confidence intervals for the parameters
can be readily constructed. Second, the sensitivity of the
transition zone to variations in T, has been illustrated in
Fig. 4. Third, the values for the parameters D_ and z
(describing high-temperature inactivation) are in fact the
maximum values, for which Stumbo (8) reported the follow-
ing range for a Lactobacillus sp.: D, in the interval [0.50,
1.00] and z in the interval [8, 10]. A detailed analysis of the
practical identifiability of these parameters is beyond the
scope of this paper. Reference is made to, e.g., the work of
Stumbo (8) and the references therein. In Fig. 6, the sensi-
tivity of the predictions by the new model towards different
values for D, and z by using the same hypothetic time-
temperature profile as in Fig. 5 is illustrated. Clearly, both
parameters have a large influence on the evolution of the
total population number N with respect to time. On the other
hand, these simulation results suggest that both parameters
may be determined uniquely if designing an experiment
using a similar dynamic time-temperature profile.

Therefore, we suggest the following two-step procedure
for the estimation of the parameters of the new dynamic
model. In a first step, experiments are carried out at a lot of
different but constant temperatures. This allows modeling of
the growth characteristics w,,, N\, and A as functions of
temperature by using model equations 9, 15, and 16. In
addition, experimental data of the specific growth rate at
temperatures around T,,,. allow for the estimation of T,
and o. In a second step, experiments carried out using a
dynamic time-temperature profile as illustrated in Fig. 6 can
be helpful to refine the value of the parameters D, and z
(taken from, e.g., literature data). As already mentioned,
T,..o can then be calculated numerically from the right side
of equation 22 if all parameters are known. Remember that
the parameters B (equation 26) and vy (equation 24) are
independent of the microbial population under consideration
and are set at a large (positive) value.

As already mentioned in the introduction, the principal
aim of this paper was to introduce more-advanced modeling
concepts into the field of predictive microbiology. The new
dynamic model presented establishes a general framework
for describing a microbial population under time-varying
conditions in a consistent way: the simulations indicate that
the predicted population evolution coincides with what may
be expected intuitively. We wish to emphasize again that
further refinements will be certainly required after an exper-
imental validation study. More specifically, the validity of
model equations 9 and 15 to 17 under time-varying temper-
ature conditions must be checked. It can be expected, e.g.,
that for the same initial population size, the lag time N\ will
depend on whether the growth phase follows an inactivation
phase. Furthermore the possible influence of pH and water
activity must be considered.

However, as these refinements are only at the level of
modeling the main characteristics A, p,,, 4, and k, the
general approach presented in this work will remain valid.

Conclusions. The main contributions of this paper can be
summarized as follows. We proposed a dynamic model
describing a bacterial population as a function of both time
and temperature, over the whole biokinetic temperature
range of growth and inactivation. The main feature of this
model is its ability to deal with time-varying temperature
conditions: although not yet validated in practice, the model
predictions look at least very meaningful and can be inter-
preted from a microbiological point of view. In contrast to an
explicit model, this dynamic model can take into account the
previous history of the food product in a natural way.

Furthermore, in the special case of a constant temperature
within the range of growth, the model predictions coincide
exactly with the experimentally validated explicit Gompertz
model. The model can easily simulate microorganisms with a
quite different behavior at temperatures around the transi-
tion from growth to inactivation, by using a simple transition
function with clear parameters. Finally, the complete model
has suitable mathematical properties to make advanced
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nonlinear parameter estimation schemes and modern opti-
mization techniques easily applicable.

As such, this model is an appropriate building block of a
global model, useful for prediction and control of microbial
growth during thermal treatment and storage of chilled
foods.
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